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1. INTRODUCTION

Thefirst step in designing an accelerator or storage ring is to choose an optimum pattern
of focusing and bending magnets, the lattice. At this stage, non-linearitiesinthe guide field are
ignored. It is assumed that the bending magnets are identical and have a pure dipole field.
Gradient magnets or quadrupoles have radial field shapes which have a constant slope,
unperturbed by higher-order multipole terms.

Before going too far in fixing parameters, the practical difficulties in designing the
magnets must be considered and the toleranceswhich can be reasonably written into the
engineering specification determined. Estimates must be made of the non-linear departures
from pure dipole or gradient field shape, and of the statistical fluctuation of these errors around
thering at each field level.

We must take into consideration that the remanent field of a magnet may have quite a
different shape from that defined by the pole geometry; that steel properties may vary during the
production of laminations; that eddy currents in vacuum chamber and coils may perturb the
linear field shape. Mechanical tolerances must ensure that asymmetries do not creep in. At high
field the linearity may deteriorate owing to saturation and variations in packing factor can
become important. Superconducting magnets will have strong error fields due to persistent
currentsin their coils.

When these effects have been reviewed, tolerances and assembly errors may have to be
revised and measures taken to mix or match batches of laminationswith different sted
properties or coils made from different batches of superconductor. It may be necessary to place
magnets in a particular order in the ring in the light of production measurements of field
uniformity or to shim some magnets at the edge of the dtatistical distribution. Even when dl
these precautions have been taken, non-linear errors may remain whose effect it is smpler to
compensate with auxiliary multipole magnets.

Apart from the obvious need to minimize closed orbit distortion, these measures must be
taken to reduce the influence of non-linear resonances on the beam. A glance a the working
diagram (Fig. 1) showswhy thisisso. The Qn, Qv plot is traversed by a mesh of non-linear
resonance lines or stopbands of first, second, third, and fourth order. The order, n, determines
the spacing in the Q diagram; third-order stopbands, for instance, converge on a point which
occurs at every 1/3 integer Q-value (including the integer itself). The order, n, is related to the
order of the multipole which drives the resonance. For example, fourth-order resonances are
driven by multipoles with 2n poles, i.e. octupoles. Multipoles can drive resonances of lower-
order; octupoles drive fourth- and second-order; sextupolesthird- and first-order, etc., but here
we simply consider the highest order driven.

The non-linear resonances are those of third-order and above, driven by non-linear
multipoles. Their strength is amplitude-dependent so that they become more important as we
seek to use more and more of the machine aperture. Theory used to discount resonances of
fifth- and higher-order as harmless (self-stabilized), but experienceinthe ISR, FNAL and SPS
suggests thisis not to be relied upon when we want beams to be stored for more than a second
or 0.

Each resonance lineis driven by a particular pattern of multipole field error which can be
present in the guide field. The lines have afinite width depending directly on the strength of the
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Fig. 1 Working diagram or Q. Qy plot showing the non-linear resonances in the operating
region of the CERN SPS

error. In the case of those driven by non-linear fields, the width increases as we seek to
exploit a larger fraction of the magnet aperture. We must ensure that the errors are small
enough to leave some clear space between the stopbands to tune the machine, otherwise
particles will fal within the stopbands and be rapidly gected before they have even been
accelerated. In genera, the line width is influenced by therandom fluctuations in multipole
error around the ring rather than the mean multipol e strength.

Systematic or average non-linear field errors also makelife difficult. They cause Q to be
different for the different particles in the beamdepending on their betatron amplitude or
momentum defect. Such a Q-spread implies that the beam will need a large resonance-free
window in the Q diagram. In the case of the largemachines, SPS, LEP, HERA, etc., the
window would be larger than the half integer squareitself if we did not balance out the average
multipole component in the ring by powering correction magnets.

Paradoxically, when a"pure" machine has been designed and built, there is often a need
to impose a controlled amount of non-linearity to correct the momentum dependence of Q or to
introduce a Q-spread among the protons to prevent a high intensity instability. Sextupole and
octupole magnets may have to be installed to this end and techniques studied which will enable
the control room staff to find the correct settings for these trim magnets once the machine
works.

Yet another set of multipole magnets is often required in a pulsed synchrotron to
deliberately excite non-linear betatron resonances and extract the beam in along slow spill.

With modern computer control, the correction of closed orbit distortion due to linear field
errors has become aroutine matter and, particularly in large accelerators, most of the emphasis
has shifted to calculation and elimination of the non-linear effects which prove to be of
considerable importance in the running-in of FNAL and the SPS. In this talk | hope to outline
sufficient of the physics and mathematics of non-linearities to introduce the reader to this
important aspect of accelerator theory.



2. MULTIPOLE FIELDS

Before we come to discuss the non-linear terms in thedynamics, we shall need to
describe the field errors which drive them. The magnetic vector potential of a magnet with 2n
polesin Cartesian coordinatesis:

A=S Afa(x2) (1)
n
where f, is a homogeneous function in x and z of order n.
Table 1
Cartesian solutions of magnetic vector potential

Multipole n Regular fp Skew fp

Quadrupole 2 |x2-22 2Xz

%Xtup0|e 3 X3 - 3xzz 3)(22_23

Octupole 4 |x4-6x22+ 2 4x3z7 - 4xZ3

Decepole S | x5-10x322 + 5x24 5x4z - 10x223 + 25

Table 1 gives fn(x,2) for low-order multipoles, both regular and skew. Figure 2 shows
the distinction. We can obtain the function for other multipoles from the binomia expansion of

f(x,2 =(x+iz)" . (2)
The real terms correspond to regular multipoles, the imaginary ones to skew multipoles.
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Fig. 2 Pole configurations for aregular sextupole and a skew sextupole

For numerical calculationsit is useful again to relate A, and field, remembering that for
regular magnets:
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Asapractica example of how one may identify the multipole components of amagnet
by inspecting its symmetry, we digress a little to discuss the sextupole errors in the main
dipoles of alarge synchrotron.

Let uslook at asimpledipole (Fig. 3). Itissymmetric about the vertical axis and itsfield
distribution will contain mainly even exponents of X, corresponding to odd n vaues: dipole,
sextupole, decapole, etc. We can see, too, that cutting off the poles at a finite width can
produce a virtua sextupole. Moreover, the remanent field pattern is frozen in athigh field
where the flux lines leading to the pole edges are shorter than those leading to the centre. The
remanent magnetomotive force

[Hede

is weaker a the pole edges, and the fieldtends to sag into a parabolic or sextupole
configuration. Thistoo produces a sextupole.

These three sources of sextupole error are the principle non-linearities in a large machine
like the SPS. Note that these sextupole fields have no skew component. However, before
launching into nonlinearities let us examine asimple linear resonance.

E/III//////II

S-pole

Fig. 3 Thefieldinasimpledipole. ThedN and &S poles superimposed on the magnet poles
give the effect of cutting off the poles to a finite width.

3. SECOND-ORDER RESONANCE

A smal elementary quadrupole of strength &KI) is located close to an F quadrupole

where By = [B. Suppose a proton describes a circular trgectory of radius a = @ and
encounters the quadrupol e at phase:

Q¢(s)=Q8 ,
where 0 is the azimuth which corresponds exactly to ¢ at the quadrupoles of a FODO lattice.



Thefirst step isto write down the unperturbed displacement at the small quadrupole:

x=acos Qb . )
It receives adivergencekick (Fig. 4):
Ax =A(B()/ Bp=A(K¢)x/ Bp . (6)
The small changein BAX',
Ap = BAX' (7)
perturbs the amplitude, a, by
Aa=Ap sinQf .

Even more significantly thereisasmall phase advance (Fig. 4):

2mQ = %cosge . (8)
By successive substitution of Egs. (7), (6). and (5), we get
2mA\Q = ﬁM cos?Q8 . (9)
(Bo)

Over one turn the Q changes from the unperturbed Q by

AQ= M(cos 2Q0+1) . (10)

4n(Bp)

On the average this shiftsQ by

>

AQ= 42(@;; . (11)

Similarly the change in amplitude, a, is on average:

82 _oma.
a

The first term, however, tells us that, as the phase Q8 on which the proton meets the

guadrupole changes on each turn by 2m x (fractiona part of Q), the Q-value for each turn
oscillates and may lie anywhere in a band

about the mean vaue.



p=px’

kick Ap = ABx’

Fig. 4 Circle diagram shows effect of kick Jpat phase Q6 advancing phase by
2rAQ = (Ap cos QBO)/a

Suppose this band includes a half-integer Q-value. Eventually, on a particular turn, each
proton will have exactly this half-integer Q-value (Q = p/2).

Because the first term in Eq. (10) is cos 2Q86, the amplitude increases by 2mAQ on the

next and all subsequent turns. The proton has been perturbed by the A(KI) error to a Q-value
where it "locks on" to a half-integer stopband. Once there, the proton repeats its motion every

two turns, and the small amplitude increase from the perturbation Aa builds up coherently and
extracts the beam from the machine.

We can visualize thisin another way by saying that the half-integer line in theQ diagram,

2Q=p (p=integer),

has a finite width +Q with respect to the unperturbed Q of the proton. Any proton whose
unperturbed Q liesin this stopband width locks into resonance and islost (Fig. 5).

In practice each quadrupolein the lattice of a red machine has asmall field error. The
A(IK)'s are chosen from a random distribution with an r.m.s. value A(IK)rms. If the N
focusing quadrupoles at ﬁ have their principal effect, we can seethat the r.m.s. expectation
valuefor AQis, from Eq. (11),

_ N BA(KD)

The factor V2 comes from integrating over the random phase distribution. The statitical
treatment is sSimilar to that used for estimating closed orbit distortion.

Now let us use some Fourier analysis to see which particular azimuthal harmonic of the
O(KI) pattern drives the stopband. Working in normalized strengthk = AK/(Bp) we analyse the
function & BK) into its Fourier harmonics with

OBK(S) = 3 Bkocogp + A) (12)
and
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Fig. 5 Alternative diagrams showing perturbed Q and a stopband

Bk = Idsé[,Bk | cos(po+2) .

In general al harmonicsi.e. all vaues of p, have equa expectation values in the random

pattern of errors. We substitute thepth term in Eq. (12) into Eq. (6) and work through the steps
to obtain anew form for Eq. (10), namely'

2m\Q = J’ cos(p9+}\){cos 2Q6+1}ds .

The integration can be simplified by writing ds = Rd6:

ﬁp

AQ= J’cos 2Q06 cog(pf+A)de6 .

Theintegra isonly finite over many betatron oscillations when the resonant condition is
fulfilled:

20=p .

We have revealed the link between the azimuthal frequency p in the pattern of quadrupole
errors and the 2Q = p condition which describes the stopband. For example, close toQ = 27.6
in the SPS lies the half-integer stopband 2Q = 55. The azimuthal Fourier component which



drives thisisp = 55. Similarly, a pattern of correction quadrupoles, powered in a pattern of
currents which follows the function

i=ig sin(5%+A) ,

can be used to compensate the stopband by matchingig and A empirically to the amplitude of the
driving term in the error pattern.

This has been used a the SPS, and in other machinespowering sets of harmonic
correction quadrupoles, each with its own power supply. We look for a sudden beam loss due

to a strong stopband at some point in the cycle whereQ' and Ap/p are large and gradient errors
important. This loss will appear as a downward step in the beam current transformer signal.
We then deliberately make Q sit on the stopband at that point to enhance the step and dter the
phase and amplitude of the azimuthal current patterns of the harmonic correctors to minimize the
loss. We may have to do this at various points in the cycle with different phase and amplitude.

Two sets of such quadrupoles are used: one set near F lattice quadrupoles affecting
mainly 2QH = 55; the other set near D quadrupoles affecting 2Qy = 55.

4. THE THIRD-INTEGER RESONANCE

The third-integer stopbands are driven by sextupole field errors and are therefore non-
linear. First imagine a single short sextupole of length |, near a horizontal maximum beta
location. Itsfieldis

2 11]
AB—dBZZ—B 2 (13)

—X = — ,

dx? 2
and it kicks a particle with betatron phase Q6 by

" n 2
pp=BB 2 - BB (1 20p (14)
2Bp 2Bp

inducing increments in phase and amplitude,

Aa Ap ,BKB a

nQo = 28p E— Zcos’Q0 sin Qo (15)

A(p:%cos Qo= BB PP 8 o Q6 (16)
a 2Bp

- ﬁé:;)a(cos 306 +3 cos Q6) . (17)

Suppose Q is close to athird integer, then the kicks on three successive turns appear as in
Fig. 6. The second term in Eq. (17) averages to zero over three turns and we are left with a
phase shift:

[¢B"a cos 3Q6

2mMQ =A@ = 880

(18)
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Fig. 6 Phase-space trgjectory on a 3rd-order resonance
We can again guess how resonances arise. Close to Q = p/3, where p is an integer,
cos 3Q0 varies slowly, wandering within a band about the unperturbed Qgpasin Fig. 5:

_BiB'a
1678Bp

+B€Ba

@ 16mBp

<Q<Q

(19)

As in the case of the half-integer resonance this is the stopband width but in redity is a
perturbation in the motion of the particle itself.

We can write the expression for amplitude perturbation

da_piBa

3Q6 . 20
. 8Ban (20)

Suppose the third integer Q-value is somewhere in the band. Then, after a sufficient number of
turns, the perturbed Q of the machine will be modulated to coincide with 3p. On each
subsequent revolution thisincrement in amplitude builds up until the particle islost. Growth is
rapid and the modulation of Q away from the resonant line is comparatively slow.

Looking back at the expressions, we find that the resonant condition, 3Q = integer, arises

because of the cos® Q8 term in Eqg. (16), which inturn stems from the x2 dependence of the

sextupole field. This reveals the link between the order of the multipole andthat of the
resonance.

We see that the a2 in Eq. (14) leads to alinear dependence of width upon amplitude. This
term was al in the case of the half integer resonance which led to awidth which was

independent of amplitude and will become a3 in the case of a fourth-order resonance giving a
parabolic dependence of width upon amplitude.

It is aso worth noting that the second term in Eq. (17), which we can ignorewhen away
from an integer Q-value, suggests that sextupoles can drive integer stopbands as well as third



integers. Inspection of the expansion of cos"@ will suggest the resonances which other
multipoles are capable of driving.

Returning to the third-order stopbands, we note that both stopband width and growthrate
are amplitude-dependent. If Qg is adistance AQ from the third integer resonance, particles with

amplitudeslessthan
a< 167(Bp)AQ

21
BB (21)
will never reach a one third integer Q and are in a central region of stability. Replacing the
inequality by an equality, we obtain the amplitude of the metastable fixed points in phase space
where there is resonant condition but infinitely slow growth (Fig. 7).
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Fig. 7 Third-order separatrix

The symmetry of the circle diagram suggests there are three fixed points & 6 = 0, 2173,
and 4173. For aresonance of order, n, there will be n such points.

The fixed points are joined by a separatrix, which isthe bound of stable motion. A more
rigorous theory, which takes into account the perturbation in amplitude, would tell us that the
separatrix istriangular in shape with three arms to which particles cling on theirway out of the
machine.

We have seen how a single sextupole can drive the resonance. Suppose how we have an
azimuthal distribution which can be expressed as a Fourier series.

B'(6)=Y B, cosp6 . (22)
Then

_ < (P8
Ap= %I@ cos 3Q6 cos podo . (23)

Thisintegra islarge and finite if
pP=3Q . (24)



As in the earlier case of the second-order resonances this reveals why it is aparticular
harmonic in the azimutha distribution which drives the stopband. It is not justthe Fourier

spectrum of B"(6) but of SB"(6) which is important in this context. Periodicities in the lattice
and in the multipole pattern can thus mix to drive resonances.

This is particularly important since some multipole fields, like the remanent field pattern
of dipole magnets, are inevitably distributed in a systematic pattern around the ring. This
pattern isrich in the harmonics of S the superperiodicity. Even when this is not the case and
errors are evenly distributed, any modulation of beta which follows the pattern of insertions can
give rise to systematic driving terms. It is an excellent working rule to keep any systematic
resonance, i.e.

(Qy +mMQ, =S (superperiod numbgk integer= p (25)
out of the half integer square in whichQ is situated. Thisis often not easy in practice.

As in the second-order case, the third-order stopbands can be compensated with sets of
multipoles powered individually to generate a particular Fourier component in their azimutha
distributions. The above equation defines four numerical relations between Q and Qv which
are resonant. The keen student can verify this with an extension to the mathematics of the
previous section. He will find that two of the lines are sendtive toerrors of a sextupole
configuration with poles a the top and bottom, the other two to sextupoles with poles
symmetrical about the median plane (Fig. 2). By permuting these two kinds of sextupoles with
the two types of location, we can attack the four lines more or less orthogonally.

5. GENERAL NUMEROLOGY OF RESONANCES

We have seen how the Q-vaue a which the resonanceoccurs is directly related to a
frequency in the azimutha pattern of variation of multipole strength. We can now generdise
this.

Suppose the azimuthal pattern of a multipole of order n can be Fourier analysed:
8" (6) =y B copd (26)
p

where Ois an azimuthal variable, range 0 to 2. We shall show that if the resonance is in one
plane only, a particular component, p = nQ, of this Fourier series, drivesit. For example, the
83rd azimutha harmonic of sextupole (n = 3) drives the third-order resonance a Q = 27.66.
The more general expressionis

(Qy+mQ, =p (27)

[¢|+|m/=n (an intege) . (28)

Each n-vaue defines a set of lines in Fig. 1, four for third-order resonances, five for

fourth-order, etc. Each line corresponds to a different homogeneous term in the multipole

Cartesian expansion (Table 1). Some are excited by regular multipoles, others by skew
multipoles.

6. SLOW EXTRACTION USING THE THIRD-ORDER RESONANCE

So far we have thought of resonances as a disease to be avoided, yet there is at least one
useful function that they can perform.

We have seen that athird-order stopband extracts particles above a certain amplitude, the
amplitude of the unstable fixed points which define a separatrix between stability and instability



(Fig. 7). The dimensions of the separatrix, characterized by a are determined by AQ, the
difference between the unperturbed Q and the stopband. As one approaches the third integer

by, say, increasing the focusing strength of the lattice quadrupoles, AQ shrinks, the unstable
amplitude, a, becomes smaller and particles are squeezed out aong the three arms of the

separatrix. 1f we make AQ shrink to zero over a period of a few hundred milliseconds, we can
produce arather slow spill extraction.

At first sight we might expect only one third of the particles to migrate to positivex-values
since there are three separatrices, but it should be remembered that a particle jumps from one
arm to the next each turn, finaly jumping the extraction septum on the turn when its
displacement is largest. The septum is a thin walled deflecting magnet a the edge of the
aperture.

The growth increases rapidly as particles progress along the unstable separatrix, and if the
stable areais small compared with the distance between beamand septum, the probability of a
particle striking the septum rather than jumping over it issmall. It clearly helps to have a thin
septum. The SPSit isacomb of wires forming a plate of an electrostatic deflector.

Magnet or quadrupole ripple can cause an uneven spill, making the Q approach the third
integer in a series of jerks thus modulating the rate at which particles emerge. A spread in
momentum amongst the particles can help, however, since if the chromaticity is finite, we will
have swept through a larger range of Q-values before dl separatrices for al momenta have
shrunk to zero. The larger Q change reduces the sensitivity to magnet ripple.

7. LANDAU DAMPING WITH OCTUPOLES

Another beneficial effect of multipolesisthe use of octupolesto damp coherent transverse
instabilities due to the beam's own electromagnetic field.

For a transverse ingtability to be dangerous, the growth time must win over other
mechanisms which tend to destroy the coherent pattern and damp out the motion. One such
damping mechanism is the Q-spread in the beam. Coherent oscillations decay, or become

dephased, in a number of betatron oscillations comparable to 1/AQ, where AQ is the Q-spread
in the beam. This corresponds to a damping time, expressed in terms of the revolution

frequency, awn/21T
2m

TR (29)

Iy =

which is just the inverse of thespread in frequencies of the oscillatorsinvolved, i.e. the
protons. The threshold for the growth of the instability is exceeded when g (which increases

with intensity) exceeds 1q4

1= 2 (30)
woAQ

This is a very general argument which affects dl instability problems involving
oscillators and is an example of Landau damping. Thinking of it another way, we can say that
the instability never gets a chance to grow if the oscillators cannot bepersuaded to act

collectively for atime g If they have a frequency spread Af, the time for whichthey can act
concertedly isjust [/Af.



Unfortunately, in our quest for a small AQ to avoid lines in the Q diagram by correcting
chromaticity, improvementsin single particle dynamics can lower the threshold intensity for the
instability. A pure machineisinfinitely unstable. In practice, a the SPS this happens at about
5 x 1012 particles per pulseif AQ is less than 0.02 and 1y about 1 msec. Suddenly the beam

begins to snake under the influence of the resistive wall instability. A large fraction of thebeam
islost before stability is restored.

The first remedy is to increase AQ. Landau damping octupoles are installed for this
purpose in the SPS. Octupoles produce an amplitude Q-dependence which is thought to be
more effective than the momentum-dependent Q-spread produced by sextupoles. Each particle
changes in momentum during a synchrotron oscillation, and in atime comparable to g dl

particles have the same mean momentum. Sextupoles do not spread the meanQ of the particles.
Octupoles, producing an amplitude Q-dependence, do.

The circle diagram can be used to calculate the effect of an octupole which gives akick:

A(BY) _ BB 3 3
Ap = = a” cos’Q0 . 31
P=B e, = a(ep) Q (31)
The changein phaseis
_ . BrB"a* cos'Ql
2m\p=Ap= : (32)
6(Bp)
which averagesto
1 2
AQ:M _ (33)
32mBp

Of course if the octupoles are placed around the ring they can excitefourth-order
resonances. A good ruleisto have as many of them as possible and to distributethem at equa
intervals of betatron phase. If there are S octupoles thus distributed their Fourier harmonics are
S 2S etc. and they can only excite structure resonances near Q values:

4Q = Sx an integer.

Although these systematic resonances are very strong it should not be difficult to choose
Sso that Q isnot in the same integer square as one of the values of nS4.

FURTHER READING

G. Guignard, Effets des Champs Magnetique Perturbateurs d'un Synchrotron - CERN 70-24
(1970), p. 67-10S.

M.H. Blewett (Editor), Theoretical Aspects of the Behaviour of Beamsin Accelerators and
Storage Rings - CERN 77-13 (1977), p. 111-138.

G. Guignard, A General Treatment of Resonances in Accelerators, CERN 78-11 (1978).



